Shri Govind Guru University
GODHRA

Syllabus of B.Sc. Sem.-V & Sem.-VI

PHYSICS

Theory & Practicals
(Based on CBCS)

Effective from June 2018
Shri Govind Guru University
Godhra
B. Sc. Semester – V
Syllabus for Physics Theory & Practical

<table>
<thead>
<tr>
<th>Unit</th>
<th>Physics theory</th>
<th>Physics theory</th>
<th>Physics theory</th>
<th>Physics Subject Elective</th>
<th>Physics Practical</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4 credit</td>
<td>4 credit</td>
<td>4 credit</td>
<td>2 Credit</td>
<td>5 Credit</td>
</tr>
<tr>
<td></td>
<td>Total 100 Marks</td>
<td>Total 100 Marks</td>
<td>Total 100 Marks</td>
<td>Total Marks 100</td>
<td>Total 200 Marks</td>
</tr>
<tr>
<td></td>
<td>Internal 30 Marks</td>
<td>Internal 30 Marks</td>
<td>Internal 30 Marks</td>
<td>Internal 30 Marks</td>
<td>Internal 60 Marks</td>
</tr>
<tr>
<td></td>
<td>External 70 Marks</td>
<td>External 70 Marks</td>
<td>External 70 Marks</td>
<td>External 70 Marks</td>
<td>External 140 Marks</td>
</tr>
<tr>
<td></td>
<td>4 hrs/Week</td>
<td>4 hrs/Week</td>
<td>4 hrs/Week</td>
<td>2 hrs/Week</td>
<td>12 hrs/Week</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>I</th>
<th>Mathematical Physics</th>
<th>Molecular Physics</th>
<th>Electromagnetism</th>
<th>Electronics</th>
<th>Student has to select one subject elective course from the University approved subject elective courses</th>
</tr>
</thead>
<tbody>
<tr>
<td>II</td>
<td>Mathematical Physics</td>
<td>Astrophysics</td>
<td>Electromagnetism</td>
<td>Electronics</td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>Classical Mechanics</td>
<td>Statistical Mechanics</td>
<td>Nuclear Physics</td>
<td>Digital Electronics</td>
<td></td>
</tr>
<tr>
<td>IV</td>
<td>Quantum Mechanics</td>
<td>Solid State Physics</td>
<td>Nuclear Physics</td>
<td>Digital Electronics</td>
<td></td>
</tr>
</tbody>
</table>

Educational Tour: In order to give exposure of industry, research institute and higher learning in the field of physics, it is expected that students of B. Sc. SEM-V & VI with Physics as principal subject must visit the industry / research institute / institute of higher learning during either V or VI semester.
<table>
<thead>
<tr>
<th>Unit</th>
<th>Physics theory</th>
<th>Physics theory</th>
<th>Physics theory</th>
<th>Physics theory</th>
<th>Physics Subject</th>
<th>Elective Physic</th>
<th>Physics Practical</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4 credit</td>
<td>4 credit</td>
<td>4 credit</td>
<td>4 credit</td>
<td>2 Credit</td>
<td>5 Credit</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total 100 Marks</td>
<td>Total 100 Marks</td>
<td>Total 100 Marks</td>
<td>Total 100 Marks</td>
<td>Total Marks 100</td>
<td>Total 200 Marks</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Internal 30 Marks</td>
<td>Internal 60 Marks</td>
<td></td>
</tr>
<tr>
<td></td>
<td>External 70 Marks</td>
<td>External 140 Marks</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4 hrs/Week</td>
<td>4 hrs/Week</td>
<td>4 hrs/Week</td>
<td>4 hrs/Week</td>
<td>2 hrs/Week</td>
<td>12 hrs/Week</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>I</th>
<th>Mathematical Physics</th>
<th>Molecular Physics</th>
<th>Plasma Physics</th>
<th>Electronics</th>
<th>Student has to select one subject elective course from the University approved subject elective courses</th>
</tr>
</thead>
<tbody>
<tr>
<td>II</td>
<td>Classical Mechanics</td>
<td>Statistical Mechanics</td>
<td>Nuclear Physics</td>
<td>Electronics</td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>Quantum Mechanics</td>
<td>Solid State Physics</td>
<td>Nuclear Physics</td>
<td>Electronics</td>
<td></td>
</tr>
<tr>
<td>IV</td>
<td>Quantum Mechanics</td>
<td>Solid State Physics</td>
<td>Electro-dynamics</td>
<td>Electronics</td>
<td></td>
</tr>
</tbody>
</table>

Educational Tour: In order to give exposure of industry, research institute and higher learning in the field of physics, it is expected that students of B. Sc. SEM-V & VI with Physics as principal subject must visit the industry / research institute / institute of higher learning during either V or VI semester.
 Semester – V

PHYSICS: Paper – 301 (Credits – 04) 48 Lectures

UNIT – I : MATHEMATICAL PHYSICS

1. Numerical Techniques:

 Curve Fitting: Introduction, Least squares method, Fitting a straight line, Fitting a Parabola, Fitting a Curve of the form \(y=ax^b \), Fitting an exponential curve. **Integration:** Integration by Trapezoidal Rule, Simpson’s (1/3) rule, Eigen value and its problems.

 Text Book & Reference Books:

2. Differential equations

 Some partial differential equations in physics, the method of Separation of variables, separation of Helmboltz equation in Cartesian coordinates, in spherical polar and cylindrical Coordinates, Laplace's equation in various coordinates, Choice of coordinate system and separability of a partial differential equation, Parabolic coordinates system, Prolate Spheroidal coordinates system, various examples based on the separation of variables.

 Article Nos.: Chapter 2: 2.1, 2.2(A – E), 2.3, A.3 (3, 4)

UNIT – II : MATHEMATICAL PHYSICS

1. 2nd Order Differential Equations

 Article Nos.: Chapter 3: 3.1 to 3.7 including examples.

Reference Book:

UNIT – III : CLASSICAL MECHANICS

1. Motion of a rigid body
 Introduction, Euler's theorem, Angular momentum and kinetic energy, The inertia tensor, Euler's equations of motion, Torque free motion, Euler’s Angles, Motion of a symmetric top, Nutational motion.

2. Variational principle
 Introduction, Configuration space, Some techniques of calculus of variation, the delta-notation, Applications of the variational principle.

Reference Book:
2. Classical Mechanics by H. Goldstein, Addison Wesley
3. Classical Mechanics by J. C. Upadhyaya, Himalaya publications

UNIT – IV : QUANTUM MECHANICS

1. Exactly soluble Eigen value problems
 Introduction, the simple harmonic oscillator, the Schrödinger equation and energy eigen values, the energy eigen functions, properties of stationary states, the abstract operator method, Coherent states, the angular momentum operators, the eigen value equation for L^2, separation of variables, admissibility conditions on solutions, eigen values, the eigen functions, Spherical harmonics, Physical interpretation, Parity. Angular momentum in stationary states of systems with spherical symmetry

Reference Book:
2. Quantum Mechanics by F. Schwabl, Narosa Publishing House
3. Quantum Mechanics by G. Aruldas, PHI
UNIT-I : ATOMIC PHYSICS

Text and Reference Books:
2. Elements of Spectroscopy by S. L. Gupta, V. Kumar, R. C. Sharma, Pragati Prakashan

UNIT-II : ASTROPHYSICS

1. Stars and Stellar evolution

 Text Book : Physics Astrophysics AQA A-Level Year 2 By Chris Bishop. Harper Collins Publishers. Article Nos.: 2.2, 3.1, 3.2, 3.3 (From Chap 2 & 3)

2. Atmosphere of Stars
 Introduction, Some important definitions, The Equation of Transfer, The solution of the equation of transfer, Processes of absorption in stellar atmospheres, continuous absorption by the Negative hydrogen Ion in collar starts, Analysis of spectral line broadening, The curve of Growth, Stellar Temperatures, The chemical composition of Stars

 Reference Book:

UNIT-III : STATISTICAL MECHANICS

1. Formulation of Quantum Statistics:
 Density matrix, Lioville’s theorem in Quantum Statistical Mechanics, Condition for Statistical equilibrium, Ensemble in Quantum Mechanics, Problems

2. Bose Einstein and Fermi Dirac Distributions:
 Symmetry of wave functions, the Quantum Distribution functions, the Boltzmann limit of Boson and Fermions Gases, Evaluation of the Partition function, Partition function for Diatomic Molecules (a) translation partition function (b) rotational partition function (c) vibration partition function (d) electronic partition function Equation of state for an Ideal gas, The quantum mechanical Paramagnetic susceptibility, problems

 Text Book: Fundamentals of Statistical Mechanics by B. B. Laud, New Age International Publishers
 Article Nos.: 7.1 – 7.4 & 8.1 – 8.7
UNIT–IV : SOLID STATE PHYSICS

1. Free Electron Fermi Gas

Introduction, Energy levels in one dimension, Effect of temperature on the Fermi-Dirac distribution, Free electron gas in three dimensions and density of states, Heat capacity of the electron gas and experimental heat capacity of metals, Electrical conductivity and ohm’s law, Experimental electrical resistivity of metals, Thermal conductivity of metals, ratio of thermal to electrical conductivity.

Article Nos.: Chapters 6

Reference book:

1. Elements of Solid State Physics by J. P. Srivastava, Prentie-Hall of India Private Limited, New Delhi
UNIT-I : ELECTROMAGNETISM

1. Magnetic Materials
 Magnetic Media, Magnetization, Magnetic Field Vector, Magnetic Susceptibility and Permeability, Comparison of Static Electric and Magnetic Fields

2. Electromagnetic induction

UNIT-II : ELECTROMAGNETISM

1. Electromagnetic induction
 Hysteresis, Maxwell’s equations, Decay of free charge, Potentials of electromagnetic fields, More about the Lorentz gauge condition, Field energy and Field momentum.

2. Electromagnetic waves
 Plane waves in non-conducting media, Polarizations, Energy flux in a plane wave, Radiation pressure and Momentum, Plane waves in conducting medium, Skin effect.

UNIT-III : NUCLEAR PHYSICS

1. Constituents of Nucleus
 Introduction, Rutherford Scattering and estimation of the nuclear size, Measurement of nuclear radius, Constituents of the nucleus and their properties, Nuclear spin, moments and statistics.

2. Alpha Rays
 Range of alpha particles, Disintegration energy of the spontaneous alpha decay, Alpha decay paradox - barrier penetration.

 Text Book: Nuclear Physics - An Introduction by S.B. Patel, New Age International. Article Nos.: Chapter-4- Part-I and II

UNIT-IV : NUCLEAR PHYSICS

1. Beta Rays
 Introduction, Continuous Beta ray spectrum - difficulties encountered to understand it, Pauli's Neutrino Hypothesis, Fermi's theory of Beta decay, the detection of neutrino, Parity non-conservation in Beta decay.

2. Gamma Rays
 Introduction, Gamma ray emission- selection rules, Internal conversion, Nuclear Isomerism

 Text Book: Nuclear Physics - An Introduction by S.B. Patel, New Age International. Article Nos.: Chapter-4- Part-III and IV

Reference books:
1. Introduction to Nuclear Physics by H.Enge, Addison Wesley
2. Nuclear Physics by D. C. Tayal, Himalaya Publisher
3. Nuclear Physics by Irvin Kaplan
UNIT – I: ELECTRONICS

1. General amplifier characteristics (Distortion)
 Introduction, concept of amplification, amplifier notations, current gain, voltage gain, power gain, amplifier input resistance, amplifier output resistance, maximum power transfer, conversion efficiency, classes of amplifier operation, harmonic distortion, three point method of calculating harmonic distortion, five point method of calculating harmonic distortion, oscilloscope display of an amplifier dynamic transfer curve, measurement of harmonic distortion, other types of amplifier distortion

2. General amplifier characteristics (Decibels)
 Introduction, Decibels, other equations for decibel computation, zero dB reference level, use of voltmeter as dB indicator, voltmeter range correction factor, impedance correction factor, frequency response curves, amplifier bandwidth, phase relationship in amplifier square wave testing.

 Text Book: Electronic Devices and circuits – An Introduction by Allen Mottershead, Printice- Hall of India Private Limited
 Article Nos. 7.1 - 7.16, 8.1 - 8.8, 8.10, 8.11

UNIT – II: ELECTRONICS

1. Low frequency response of a transistor amplifier:
 Introduction, Effect of an emitter by pass capacitor on low frequency response, effect of coupling capacitor on low frequency response, cascading of CE stages, mid frequency gains, low frequency response of cascaded stages, Amplifier low frequency response to a square wave, transformer coupled transistor amplifier, low frequency response of TC amplifier, step response of a TC amplifier.

2. High frequency response of a transistor amplifier:
 Introduction, High frequency model for a CE amplifier, approximate CE high frequency model with a resistive load, CE short circuit current gain, high frequency current gain with a resistive load, high frequency response of cascaded CE stages, amplifier high frequency response to a square wave, high frequency response of a transformer coupled amplifier.

 Text Book: Electronic Devices and circuits – An Introduction by Allen Mottershead, Printice- Hall of India Private Limited
 Article Nos.: 15.1 –15.8, 16.1 – 16.7
UNIT – III: DIGITAL ELECTRONICS

1. **Circuit analysis, design**
 Boolean laws and theorems, sum of products method, truth table to Karnaugh map, pairs, quads and octets, Karnaugh simplification, don't care conditions, product of sums method product of sums simplification.

 Text Book and Reference Book :

UNIT – IV: DIGITAL ELECTRONICS

1. **Arithmetic circuits:**
 Binary addition binary subtraction, unsigned binary number, sign magnitude numbers, 2 S compliment representation, 2'S compliment arithmetic building blocks.

2. **FLIP- FLOP**
 RS flip flop, clocked RS flip flop, D flip flop, Edged triggered D flip flop, JK flip flop, JK master slave flip flop

 Text Book: Digital Principles and Applications by Malvino and Leach
 Article Nos.: 5.1 to 5.7, 8.1 -8.4, 8.6, 8.7
PHYSICS: Paper – 306 : Practical

(Credits – 05) (5 credit : 12 hrs/week)
Total : 200 Marks (Internal : 60 Marks, External : 140 Marks)

GROUP-A
1. Acceleration due to gravity by Kater's pendulum (fixed knife edges).
2. Hall Effect
3. Characteristics of GM Tube
4. Viscosity by Log decrement
5. Gonio meter

GROUP-B
1. Michelson interferometer. To determine the wavelength of monochromatic light.
2. To calibrate the spectrometer using Edser-Butler plate.
3. Refractive index by total internal reflection using Gauss eye piece.
4. An optical method of determining dielectric constant, dipole moment and polarizability of a polar liquid using Hollow prism
5. Fabry-Perot etalon. Determination of the thickness of air film and wavelength of light using spectrometer.

GROUP-C
1. Mutual Inductance by Ballistic Galvanometer
2. Determination of Curie temperature of ferroelectric ceramic
3. Use of Excel for data analysis and graph plotting.
4. Heaviside mutual inductance bridge.
5. Numerical integration by computer

GROUP-D
2. Half adder, Full adder and substractor using IC 7483.
3. Series resonance. To find the band width and Q value of a coil.
4. Frequency response of CE amplifier
5. Study of voltage regulated circuit using IC7805

Reference Books:
1. Practical Physics by S.L.Gupta & V kumar
3. B.Sc. Practical Physics by C.L.Arora, S Chand.
Unit-I : Mathematical Physics

1. Some special functions in Physics: Bessel functions, Bessel functions of the second kind, Henkel functions, Spherical Bessel functions, Legendre polynomials, Associated Legendre polynomials and spherical harmonics, Hermite polynomials, Laguerre polynomials, The gamma function, the Dirac delta function, examples.

Text Book: Mathematical Physics by P.K. Chattopadhyay, New Age International Publishers
(2006) Article Nos.: Chapter 5: 5.1 to 5.9.

Reference Book:

Unit-II : Classical Mechanics

1. Lagrange's and Hamiltons equations

Text Book: Introduction to Classical Mechanics by R. G. Takawale and P. S. Puranik,
Tata McGraw-Hill Publishing Co. Ltd. Article Nos.: Chapter 11.4 to 11.13; Chapter 12: 12.1 to 12.4

Reference Book:
2. Classical Mechanics by H. Goldstein, Addison Wesley.

Unit-III : Quantum Mechanics

1. Three dimensional square well potential: Solutions in interior region, Solutions in the exterior Region and Matching,Theory of Hydrogen atom: Solution of the radial Equation, energy levels, Stationary state wave functions, Discussion of bound states, Other problems in three dimensions: The anisotropic oscillator, the isotropic oscillator, normal modes of coupled systems of particles.

Text Book: A Text Book of Quantum Mechanics by P. M. Mathews and K. Venketeshan,
Article Nos.: Chapter 4: 4.13 to 4.17 and 4.20 to 4.22
Reference Book:
1. Quantum Physics of atoms, Molecules solids Nuclei and Particles, R. Eisberg and R. Resnick, John Wily & Sons;
3. Quantum Mechanics by F. Schwabl, Narosa Publishing House

Unit-IV : Quantum Mechanics

1. **Representations, Transformations and Symmetries:**
 Quantum states, state vectors and wave function, The Hilbert space of state vectors, Dirac notation, Dynamical variables and linear operators, Representations, Continuous basis - The Schrödinger representation, Degeneracy, Labeling by commuting observable, change of basis, Unitary transformations, Unitary transformation induced by change of coordinate system: translation, Unitary transformation induced by Rotation of coordinate system, The algebra of Rotation generators, transformation of dynamical variables, Symmetries and conservation laws, the space inversion, time reversal.

Reference Book
1. Quantum Theory, Groups and Representations: An Introduction by P. Woit, Department of Mathematics, Columbia University,
UNIT- I : MOLECULAR PHYSICS

1. Separation of Electronic and Nuclear Motion:
 The Born-Oppenheimer approximation, Types of molecular energy states and associated spectra, Types of spectra, Pure rotational spectra: Salient features of rotational spectra, The molecule as a rigid rotator: Explanation of rotational spectra, Diatomic molecule as a Non-rigid rotator, Validity of the theory: Determination of the inter-nuclear distance (Bond length) and moment of inertia, Isotope effect in rotational spectra, Rotational spectra of polyatomic molecules, Raman effect and its salient features, Observation of Raman spectra, Related Numerical.

Text Books:
1. Molecular structure and Spectroscopy G Aruldhas, Prentice-Hall of India Private Limited
2. Elements of Spectroscopy, S L Gupta, V Kumar, R C Sharma, Pragati Prakashan

UNIT- II: STATISTICAL MECHANICS

1. Transport phenomena: Introduction, Mean collision time, Scattering cross-section, viscosity, electrical conductivity, thermal conductivity, thermionic emission, photoelectric effect, molecular collision, effusion, diffusion, Brownian motion, Einstein’s relation for mobility, Related Numerical.

Text Book: Fundamentals of Statistical Mechanics by B. B. Laud, New Age International Publishers

Reference Book:

UNIT- III : SOLID STATE PHYSICS

1. Theory of Dielectrics: Polarization, Dielectric constant, Local Electric field, Dielectric polarizability, Sources of polarizability, theory of electric polarizability and optical absorption, ionic polarization, polarization from dipole orientation, dielectric losses, Applications to optical phonon modes in ionic crystals, the longitudinal optical mode, the transverse optical mode, the interaction of electromagnetic waves with optical modes, application to the motion of electrons in polar crystals.

Text Book: Elements of Solid State Physics by J. P. Srivastava, Prentie-Hall of India Private Limited, New Delhi

Reference book:
UNIT- IV: SOLID STATE PHYSICS

1. **Super conductivity**
 Experimental Survey, Occurrence of superconductivity, Destruction of superconductivity by magnetic field, Meissner effect, Heat capacity, energy gap, Microwaves and infrared properties, Isotope effect, Theoretical Survey, London equation, BCS theory of superconductivity, Flux quantization in a superconducting ring, Type –I & Type -II superconductors.

2. **Fibre Optics**

 Text Book: A Textbook of Optics by Dr. N. Subrahmanyam, Brijlal, Dr. M.N. Avadhnu (Revised Edition), S.Chand Publication. Articles from Chap. 24.
UNIT- I : PLASMA PHYSICS

1. Motion of charged particles in Magnetic & Electric field:

Microscopic & Macroscopic description, Maxwell’s equation & charge conservation, Motion of a charged particle in electric & Magnetic fields, Uniform magnetic field & Oscillating electric field, Drift velocity in a gravitational field, Magnetic field varying in space & time : adiabatic variance of the magnetic moment, Inhomogeneous magnetic field : gradient drift & curvature drift, peculiarity of drift motions, Converging magnetic field : magnetic mirror, Longitudinal adiabatic invariant, Periodic magnetic field : Gyro relaxation effect, Motion of magnetic lines of force.

UNIT- II : PLASMA PHYSICS

1. Characteristics of plasma in magnetic field
Description of plasma as gas mixture, Properties of plasma in a magnetic field, Force on plasma in magnetic field, Current in magnetized plasma, Diffusion in a magnetic field, Collisions in fully ionized magnetoplasma, Pinch effect, Oscillations and waves in the Plasma.

Text book: Elements of Plasma Physics by S. N. Goswami, New Central Book Agency (P) Ltd. Article Nos.: 3.1 – 3.8,

Reference Book:
1. Introduction to Plasma Physics by F.F. Chen, Plenum Press, 2nd ed

UNIT- III : NUCLEAR PHYSICS

1. The liquid drop model of the nucleus
Introduction, Binding energies of nuclei : plot of B/A against A., Weizsacher's semi empirical mass formula Nucleon emission.

2. Nuclear Energy
Introduction, Neutron induced fission, Asymmetrical fission- Mass Yield, Emission of delayed neutrons by fission fragments, Energy released in the fission of 235U, Fission on lighter nuclei, Fission chain reaction, Neutron cycle in a thermal nuclear reactor, Nuclear reactors.

Text Book: Nuclear Physics - An Introduction by S.B. Patel, New Age International. Article Nos.: 5.1, 5.2, 5.3, and 5.7, 6.1 to 6.9

Reference books:
1. Introduction to Nuclear Physics by H.Enge, Addison Wesley
2. Nuclear Physics by D. C. Tayal, Himalaya Publisher
3. Nuclear Physics by Irvin Kaplanl
UNIT- IV : NUCLEAR PHYSICS

1. Elementary particles

 Article Nos.: 10.1 to 10.14

Reference Books:
1. Introduction to Nuclear Physics by H.Enge, Addison Wesley
2. Nuclear Physics by D. C. Tayal, Himalaya Publisher
3. Nuclear Physics by Irving Kaplan
UNIT – I : ELECTRONICS

1. **Negative Feedback in transistor amplifier:**
 General theory of feedback, reasons for negative feedback, loop gain, types of negative feedback in transistor circuits.

2. **Transistor Oscillators**
 Introduction, Effect of positive feedback, requirements for oscillations, the phase shift oscillator, Wien bridge oscillator, Resonant circuit oscillators (Colpit and Hearley oscillators), the maximum frequency of oscillation of a transistor.

Text Book: *Electronic Devices and circuits – An introduction by* Allen Mottershead
 Article Nos.: 17.1 to 17.4, 18.1-18.3, 18.5 to 18.7

Reference Book:
 1. Hand Book of Electronics by Gupta and Kumar

UNIT – II : ELECTRONICS

1. **Field effect transistor amplifier**
 Introduction, Advantages and disadvantages of the FET, Basic construction of the JFET (Revision), Characteristics curve of the JFET, Principle of operation of the JFET, Effect of the VDS on channel conductivity, Channel ohmic region and pinch off region, Characteristics parameters of the FET(Revision), Common source AC amplifier

2. **Operational Amplifier**
 Introduction, The operational amplifier, the inverting differential operational amplifier, the non inverting differential operational amplifier, the differential amplifier, General purpose IC operational amplifier, Applications of operational amplifier.

Text Book: *Electronic Devices and circuits – An introduction by* Allen Mottershead
 Article Nos.: 21.1 to 21.7, 21.9 and 23.1, 23.2, 23.5, 23.6, 23.7, 23.12

Reference Book:
 1. Integrated Electronics by Millman Halkias

UNIT – III : ELECTRONICS

1. **Network Transformations**
 Reduction of complicated network, conversion between T and π sections, bridge T network, the lattice network, superposition theorem, the reciprocity theorem, thevenin’s theorem, Norton theorem, maximum power transfer theorem, compensation theorem.

 Resonance : Definition of Q, the figure of merit, series resonance, Bandwidth of the series resonant circuit, parallel resonance or antirsonance, current in antiresonant circuits, Bandwidth of antiresonant circuits.

Text Book: *Network Lines and Field* by J D Ryder. (1.4 to 1.13, 2.1 to2.4, 2.6, 2.8)

Reference Books:
 1. Network Analysis by M. S. Van Valkenburg Network Analysis by G K Mithal
UNIT – IV : ELECTRONICS

1. **Regulated Power Supply:**
 Introduction, stabilization, limitations of Zener diode regulator, Transistor series voltage regulator, transistor shunt voltage regulator, a series regular with two transistors, current regulator
 Text Book: Electronic Devices & Circuits by A. Mottershead Article Nos.: 28.2 to 28.4

2. **Electronic Instruments: Cathode ray oscilloscope:**
 CRO, CRT, electrongun, deflecting plates, screen, methods of focusing, deflection systems, mathematical expression for electrostatic deflection sensitivity, electromagnetic deflection system, magnetic deflection in CRT, Time base (without circuits), CRO Parts, operation of a typical oscilloscope control, uses of CRO.
PHYSICS: Paper – 312: Practical

(Credits – 05) (5 credit : 12 hrs/week)

Total : 200 Marks (Internal : 60 Marks, External : 140 Marks)

GROUP-A
1. Acceleration due to gravity by Kater's pendulum (variable knife edges).
2. Susceptibility of ferromagnetic substance by Quink's method (Magnetic fluid).
 Comparison of relative intensities of different sources using G.M. Tube.
4. Fresnel’s Biprism
5. Use of Excel for data analysis.

GROUP-B
1. Michelson interferometer – Determination of “d”.
2. Absorption spectrum of Iodine molecule.
3. Refractive index of liquid by total internal reflection.
4. To determine the charge on electron by Millikan’s experiment.
5. To analyze elliptically polarized light using Babinate compensator.

GROUP-C
1. Determination of capacity of Scherreing Bridge
2. To find the value of permeability of free space
3. Numerical differentiation by computer
4. A.C. Circuit analysis by C.R.O. Measurement of frequency and phase difference
5. 741 IC-OPAMP

GROUP-D
1. Colpitts oscillator.
2. Parallel resonance. To find the band width and Q value of a coil.
3. Frequency response of a common source FET amplifier.
4. To measure a threshold current of a LASER diode at room temperature.
5. Study of Hysteresis using C.R.O.

Reference Books:
1. Practical Physics by S.L.Gupta & V kumar
3. B.Sc. Practical Physics by C.L.Arora, S Chand.
B. Sc. (PHYSICS) Semester – V & VI
Effective from Academic year 2018

List of Elective Courses (2 Credit : 2 hrs/week)

Students have to select any one course as elective course from the following University approved elective courses in

B. Sc. SEM-V (as P-305) and SEM-VI (as P-311).

1. Nanoscience and nanotechnology
2. Atmospheric Science
3. Basic Instrumentation Skills
4. Weather Forecasting
5. National Service Scheme

1. Nanoscience and nanotechnology

Unit – I: Introduction to Nanomaterials:
Introduction to nano-sized materials and structures, Definitions of nanomaterials, Brief history of Nanomaterials and challenges in Nanotechnology, Properties of Nanomaterials: Effect of reduction of dimensions, quantum size effects, Mechanical, Thermal, Optical and Magnetic properties of nanomaterials

Unit – II: Methods of Synthesis of Nanomaterials:
Bottom-up and Top-down approaches - Mechanical method: High Energy Ball Milling, Methods based on evaporation (Physical Vapour Deposition), Chemical Vapour Deposition, Chemical Methods: Colloidal Method and Sol-gel Method

Unit – III: Special Nanomaterials:
Carbon Nanotubes (CNT), Types –Single walled, multiwalled CNT, Structures and properties of CNTs, Synthesis of carbon nanotubes

Unit – IV: Analytical (Characterization) Technique:
Microscopes: Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), X-ray diffraction
Applications: Electronics, Biotechnology and Medical, Automobiles, Space, Defense, Sports, Cosmetics, Cloth Industry.

Text Book:
Reference Book :
1. Introduction to Nanotechnology, C.P. Poole Jr. and F.J. Ownes, Wiley Publication.
2. Nanoscience and Technology eds. R.W.Kelsall, I.W. Hemley & M. Geoghehan, John Wiley and sons
2. Atmospheric Science

Unit – I: Introduction and Chemistry of Earth’s atmosphere:

Unit – II: Ozone in the Atmosphere:
Evolution of the ozone layer, sources and sinks of tropospheric and stratospheric ozone, chlorofluorocarbons, ozone and UV-radiations, supersonic transport.

Unit – III: Atmospheric aerosols:
Concentration and size, sources, and transformation, Chemical composition, transport and sinks, residence times of aerosols, geographical distribution and atmospheric effects,

Unit – IV: Air Pollution and atmospheric effects:
Air pollution: Sources of anthropogenic pollution, Emission Inventory, Atmospheric effects- smog, visibility. Measurements of Particulate matters, SOx, NOx and CO

Reference Books:
1. Introduction to Atmospheric Chemistry by P.V. Hobbs
2. Atmospheric Chemistry and Physics : From Air Pollution to Climate Change by John H. Seinfeld, Spyros N. Pandis
3. Chemistry of the Upper and Lower Atmosphere by Barbara J. Finlayson-Pitts, Jr., James N. Pitts.
5. Basic Physical Chemistry for Atmospheric Sciences by P.V. Hobbs
3. Basic Instrumentation Skills

UNIT-I: Basic of Measurement:

UNIT-II: Cathode Ray Oscilloscope:
Block diagram of basic CRO. Construction of CRT, Electron gun, electrostatic focusing and acceleration (Explanation only– no mathematical treatment), brief discussion on screen phosphor, visual persistence & chemical composition. Time base operation, synchronization. Front panel controls. Specifications of a CRO and their significance. Use of CRO for the measurement of voltage (dc and ac frequency, time period. Special features of dual trace, introduction to digital oscilloscope, probes.

UNIT-III: Signal Generators and Analysis Instruments:
Block diagram, explanation and specifications of low frequency signal generators. pulse generator, and function generator. Brief idea for testing, specifications. Distortion factor meter, wave analysis.

UNIT-IV: Digital Multimeter:
Block diagram and working of a digital multimeter. Working principle of time interval, frequency and period measurement using universal counter/ frequency counter, time- base stability, accuracy and resolution.

Reference Books:
2. Performance and design of AC machines - M G Say ELBS Edn.
4. Weather Forecasting

UNIT-I: Introduction to atmosphere:
Elementary idea of atmosphere: physical structure and composition; compositional layering of the atmosphere; variation of pressure and temperature with height; air temperature; requirements to measure air temperature; temperature sensors: types; atmospheric pressure: its measurement; cyclones and anticyclones: its characteristics.

UNIT-II: Measuring the weather:
Wind; forces acting to produce wind; wind speed direction: units, its direction; measuring wind speed and direction; humidity, clouds and rainfall, radiation: absorption, emission and scattering in atmosphere; radiation laws.

UNIT-III: Weather systems: Global wind systems; air masses and fronts: classifications; jet streams; local thunderstorms; tropical cyclones: classification; tornadoes; hurricanes. (3 Periods)
Climate and Climate Change: Climate: its classification; causes of climate change; global warming and its outcomes; air pollution; aerosols, ozone depletion, acid rain, environmental issues related to climate.

UNIT-IV: Basics of weather forecasting:
Weather forecasting: analysis and its historical background; need of measuring weather; types of weather forecasting; weather forecasting methods; criteria of choosing weather station; basics of choosing site and exposure; satellites observations in weather forecasting; weather maps; uncertainty and predictability; probability forecasts.

Reference books:
5. National Service Scheme

UNIT-I: Introduction And Basic Concepts Of NSS
History and Growth of NSS, Aims and Objectives of NSS.
The Motto, NSS Symbol, NSS Badge, NSS Day, NSS Song etc.,
Part I : Chap 1 & 2.

UNIT-II: NSS Programmes And Activities
Basic Concept and components, Aims of NSS program activities,
Classification of NSS program, NSS Regular Activities in adopted villages, slums and with voluntary organizations.
Part II : Chap 1 & 2.

UNIT-III: Special Camping Program
Special Camping Program, Planning and preparation of special camping program
Part III : Chap 1 & 2.

UNIT-IV: Implementation of NSS Programs
NSS at Institution Level- organization and administration of NSS
Program Officer- Appointment, Duties and Function
Part VI : Chap 1 & 2.

Reference Book : National Service Scheme Manual Revised 2006 GOI.
Part I, II, III & VI.